Extensions 1→N→G→Q→1 with N=C26 and Q=C22:C4

Direct product G=NxQ with N=C26 and Q=C22:C4
dρLabelID
C22:C4xC26208C2^2:C4xC26416,176

Semidirect products G=N:Q with N=C26 and Q=C22:C4
extensionφ:Q→Aut NdρLabelID
C26:(C22:C4) = C2xD13.D4φ: C22:C4/C22C4 ⊆ Aut C26104C26:(C2^2:C4)416,211
C26:2(C22:C4) = C2xD26:C4φ: C22:C4/C2xC4C2 ⊆ Aut C26208C26:2(C2^2:C4)416,148
C26:3(C22:C4) = C2xC23.D13φ: C22:C4/C23C2 ⊆ Aut C26208C26:3(C2^2:C4)416,173

Non-split extensions G=N.Q with N=C26 and Q=C22:C4
extensionφ:Q→Aut NdρLabelID
C26.1(C22:C4) = D26.D4φ: C22:C4/C22C4 ⊆ Aut C261044+C26.1(C2^2:C4)416,74
C26.2(C22:C4) = D26:C8φ: C22:C4/C22C4 ⊆ Aut C26208C26.2(C2^2:C4)416,78
C26.3(C22:C4) = Dic13.D4φ: C22:C4/C22C4 ⊆ Aut C262084-C26.3(C2^2:C4)416,80
C26.4(C22:C4) = D26.Q8φ: C22:C4/C22C4 ⊆ Aut C26104C26.4(C2^2:C4)416,81
C26.5(C22:C4) = D52:1C4φ: C22:C4/C22C4 ⊆ Aut C261048+C26.5(C2^2:C4)416,82
C26.6(C22:C4) = Dic26:C4φ: C22:C4/C22C4 ⊆ Aut C261048-C26.6(C2^2:C4)416,83
C26.7(C22:C4) = D13.Q16φ: C22:C4/C22C4 ⊆ Aut C261048-C26.7(C2^2:C4)416,84
C26.8(C22:C4) = D52:C4φ: C22:C4/C22C4 ⊆ Aut C261048+C26.8(C2^2:C4)416,85
C26.9(C22:C4) = D26.4D4φ: C22:C4/C22C4 ⊆ Aut C261044C26.9(C2^2:C4)416,86
C26.10(C22:C4) = C26.M4(2)φ: C22:C4/C22C4 ⊆ Aut C26208C26.10(C2^2:C4)416,87
C26.11(C22:C4) = Dic13.4D4φ: C22:C4/C22C4 ⊆ Aut C261044C26.11(C2^2:C4)416,88
C26.12(C22:C4) = D52:4C4φ: C22:C4/C2xC4C2 ⊆ Aut C261042C26.12(C2^2:C4)416,12
C26.13(C22:C4) = C22.2D52φ: C22:C4/C2xC4C2 ⊆ Aut C261044C26.13(C2^2:C4)416,13
C26.14(C22:C4) = D52:6C4φ: C22:C4/C2xC4C2 ⊆ Aut C26208C26.14(C2^2:C4)416,16
C26.15(C22:C4) = C26.Q16φ: C22:C4/C2xC4C2 ⊆ Aut C26416C26.15(C2^2:C4)416,17
C26.16(C22:C4) = C52.44D4φ: C22:C4/C2xC4C2 ⊆ Aut C26416C26.16(C2^2:C4)416,23
C26.17(C22:C4) = D26:1C8φ: C22:C4/C2xC4C2 ⊆ Aut C26208C26.17(C2^2:C4)416,27
C26.18(C22:C4) = D52:5C4φ: C22:C4/C2xC4C2 ⊆ Aut C26208C26.18(C2^2:C4)416,28
C26.19(C22:C4) = C52.46D4φ: C22:C4/C2xC4C2 ⊆ Aut C261044+C26.19(C2^2:C4)416,30
C26.20(C22:C4) = C4.12D52φ: C22:C4/C2xC4C2 ⊆ Aut C262084-C26.20(C2^2:C4)416,31
C26.21(C22:C4) = D52:7C4φ: C22:C4/C2xC4C2 ⊆ Aut C261044C26.21(C2^2:C4)416,32
C26.22(C22:C4) = C26.10C42φ: C22:C4/C2xC4C2 ⊆ Aut C26416C26.22(C2^2:C4)416,38
C26.23(C22:C4) = C52.55D4φ: C22:C4/C23C2 ⊆ Aut C26208C26.23(C2^2:C4)416,37
C26.24(C22:C4) = D4:Dic13φ: C22:C4/C23C2 ⊆ Aut C26208C26.24(C2^2:C4)416,39
C26.25(C22:C4) = C52.D4φ: C22:C4/C23C2 ⊆ Aut C261044C26.25(C2^2:C4)416,40
C26.26(C22:C4) = C23:Dic13φ: C22:C4/C23C2 ⊆ Aut C261044C26.26(C2^2:C4)416,41
C26.27(C22:C4) = Q8:Dic13φ: C22:C4/C23C2 ⊆ Aut C26416C26.27(C2^2:C4)416,42
C26.28(C22:C4) = C52.10D4φ: C22:C4/C23C2 ⊆ Aut C262084C26.28(C2^2:C4)416,43
C26.29(C22:C4) = C52.56D4φ: C22:C4/C23C2 ⊆ Aut C261044C26.29(C2^2:C4)416,44
C26.30(C22:C4) = C13xC2.C42central extension (φ=1)416C26.30(C2^2:C4)416,45
C26.31(C22:C4) = C13xC22:C8central extension (φ=1)208C26.31(C2^2:C4)416,48
C26.32(C22:C4) = C13xC23:C4central extension (φ=1)1044C26.32(C2^2:C4)416,49
C26.33(C22:C4) = C13xC4.D4central extension (φ=1)1044C26.33(C2^2:C4)416,50
C26.34(C22:C4) = C13xC4.10D4central extension (φ=1)2084C26.34(C2^2:C4)416,51
C26.35(C22:C4) = C13xD4:C4central extension (φ=1)208C26.35(C2^2:C4)416,52
C26.36(C22:C4) = C13xQ8:C4central extension (φ=1)416C26.36(C2^2:C4)416,53
C26.37(C22:C4) = C13xC4wrC2central extension (φ=1)1042C26.37(C2^2:C4)416,54

׿
x
:
Z
F
o
wr
Q
<